3.147 \(\int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=78 \[ \frac {\sqrt {2} (A-B) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 B \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

[Out]

(A-B)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)/d/a^(1/2)+2*B*tan(d*x+c)/d/(a+a*se
c(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {4001, 3795, 203} \[ \frac {\sqrt {2} (A-B) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a} d}+\frac {2 B \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(Sqrt[2]*(A - B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) + (2*B*Tan[c +
 d*x])/(d*Sqrt[a + a*Sec[c + d*x]])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx &=\frac {2 B \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+(A-B) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\\ &=\frac {2 B \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}-\frac {(2 (A-B)) \operatorname {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {\sqrt {2} (A-B) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 B \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 88, normalized size = 1.13 \[ \frac {\tan (c+d x) \left (\sqrt {2} (A-B) \tanh ^{-1}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right )+2 B \sqrt {1-\sec (c+d x)}\right )}{d \sqrt {1-\sec (c+d x)} \sqrt {a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]*(A + B*Sec[c + d*x]))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((Sqrt[2]*(A - B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]] + 2*B*Sqrt[1 - Sec[c + d*x]])*Tan[c + d*x])/(d*Sqrt[
1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 287, normalized size = 3.68 \[ \left [-\frac {\sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, B \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {2 \, B \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - \frac {\sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right ) + a d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*
x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*cos(
d*x + c) + 1)) - 4*B*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c) + a*d), (2*B*sqrt
((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) - sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*arctan(sqrt(2)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c) + a*d
)]

________________________________________________________________________________________

giac [B]  time = 1.98, size = 144, normalized size = 1.85 \[ \frac {\frac {2 \, \sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} + \frac {{\left (\sqrt {2} A - \sqrt {2} B\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} \mathrm {sgn}\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

(2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*B*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sgn(tan(
1/2*d*x + 1/2*c)^2 - 1)) + (sqrt(2)*A - sqrt(2)*B)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*
x + 1/2*c)^2 + a)))/(sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d

________________________________________________________________________________________

maple [B]  time = 1.59, size = 200, normalized size = 2.56 \[ \frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (A \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-B \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )-2 B \cos \left (d x +c \right )+2 B \right )}{d \sin \left (d x +c \right ) a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(A*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)
/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-B*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(
d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)-2*B*cos(d*x+c)+2*B)/sin(d*x+c
)/a

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )}{\sqrt {a \sec \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sec(d*x + c)/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\cos \left (c+d\,x\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(cos(c + d*x)*(a + a/cos(c + d*x))^(1/2)),x)

[Out]

int((A + B/cos(c + d*x))/(cos(c + d*x)*(a + a/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sec {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sec(c + d*x)/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________